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Precision of Soil Particle Size Analysis 
using Laser Diffractometry

Pedology

Particle size is a fundamental analysis procedure for soils, and pedological 
and paleopedological analysis (e.g., Langohr et al., 1976; Rawls, 1983; 
Miller et al., 1988; Mason and Jacobs, 1999; Konen et al., 2003; Lindbo 

et al., 2008). Soil particle size distributions infl uence most pedogenic processes, 
and therefore, allow for inferences about the pathways of soil development. For ex-
ample, soil particle size is an important factor in the formation of subsoil structure 
(White, 1967), the depth of clay accumulation (Muckenhirn et al., 1955; Putman 
et al., 1988), the degree of podzolization (Schaetzl, 1991; 1996), and thickening 
of the solum (Protz et al., 1985; Harden, 1988; Schaetzl, 1992). Th e particle size 
characteristics of sediments are also very important criteria in determining their 
geologic origins (Fehrenbacher et al., 1965; Frazee et al., 1970; Tsoar and Pye, 
1987; Ding et al., 1999; Mason, 2001; Stanley and Schaetzl, 2011). And lastly, soil 
particle size infl uences many soil quality factors, for example, permeability, water 
retention, ease of tillage, seed germination, aggregate structure, erosion potential, 
C storage, and nutrient storage (Ben-Hur et al., 1985; Rawls et al., 1982; Imhoff  et 
al., 2002; Keddy and Constabel, 1986; Chepil, 1953; Silver et al., 2000). Th erefore, 
few question the need for accurate and precise particle size data in soils and Earth 
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Precision, particularly in terms of repeatability in particle size analysis (PSA), 
has recently resurfaced as an issue due to the increased use of laser PSA for 
PSA. Because laser diffractometry produces much more detailed data than 
does traditional pipette analysis, and because a much smaller sample is used 
in the analysis, precision or repeatability of laser-produced PSA data is a legit-
imate concern. For example, of the 1485 soil samples analyzed in our study, 
most of which are silty or loamy and each of which was analyzed at least 
twice, 11.5% changed texture class, from the fi rst to the second PSA mea-
surement. Statistical analysis of these paired, subsample data was therefore 
used to establish a standard for normal variance among the subsamples, as 
a test of precision. Subsample pairs with an absolute cumulative bin differ-
ence (CBD) of <1 SD above the population’s mean CBD were determined to 
have acceptable precision. This approach provides both a simple method for 
assessing the variation in PSA data sets and establishes a comparable standard 
for determining when additional measurements are needed to fi nd a more 
precise result. Researchers may be tempted to simply use mean PSA data for 
samples that have been run multiple times. However, we found that using 
the per bin mean for only the two best matching subsamples was the opti-
mal approach. Our analysis also indicates that, as particle size gets coarser 
(at least within silty/loamy samples), the precision of laser-generated particle 
size data generally decreases.

Abbreviations: CBD, cumulative bin difference; MBD, mean bin difference; PSA, particle 
size analysis; USDA, United States Department of Agriculture.
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science applications. As a result, advances in the accuracy and ef-
fi ciency of particle size characterization have accrued for as long 
as scientists have been analyzing mineral sediment.

During the last three decades, laser diff ractometry has been 
increasingly used as a means of characterizing particle size distri-
butions of a variety of sediments. Laser diff ractometry provides 
both quick and highly detailed PSA results (e.g., Loizeau et al., 
1994; Manalo et al., 2003; Goossens and Buck, 2009; Stanley 
and Schaetzl, 2011). With some conversion, these types of data 
have also been found to provide comparable results to previously 
accepted methods of soil particle size characterization, for ex-
ample, pipette analysis (Beuselinck et al., 1998; Campbell, 2003; 
Eshel et al., 2004; Arriaga et al., 2006, Duc et al., 2007).

Laser particle size analyzers report results as the percent of 
the sample’s particle volume, within categories of small, discrete 
particle size ranges. Like a relative frequency histogram, the rang-
es of the categories (bins) can be adjusted to increase or decrease 
the resolution of the results, for example, the traditional fi ve sand 
category “splits” (cf., Scull and Schaetzl, 2011). Th e laser particle 
analyzer used in this research–a Malvern Mastersizer 2000–uses 
a 105 bin distribution. Because particle size data are, in theory, 
continuous, more (and smaller) bins provide a better and more 
detailed picture of the particle size distribution. Indeed, with 
the higher level of detail, minute textural diff erences between 
samples can be determined. However, the higher level of detail 
provided by laser particle size analysis also has drawbacks; it 
increases the sensitivity of the results to diff erent measurement 
values. For example, if a second (diff erent) measurement value 
for a particle’s size places that particle in the same bin as the fi rst 
measurement, then the diff erence has no eff ect on the resulting 
data. But if the diff erence is enough to change the bin that the 
particle is categorized in, which happens more frequently with 
smaller bin sizes, the resulting data are aff ected. 

When considering smaller diff erences between samples, the 
precision (or repeatability) of the result increases in importance 
because diff erences could potentially be only due to measure-
ment variability. Measurement variability, that is, lack of preci-
sion, can result from diff erent sample preparation methods, vary-
ing strength or optical properties of the sediment being analyzed, 
and/or machine parameters (Sperazza et al., 2004; Storti and 
Balsamo, 2010). Sperazza et al. (2004) found that the precision 
of the Malvern Mastersizer 2000 for samples measured 15 con-
secutive times, that is, without being removed from the machine, 
was within 1% for medium grain sizes. However, additional 
measurement variability could be introduced from diff erent 
subsamples of the original sample. Separate subsamples can have 
diff erences in concentrations in the test solution (i.e., obscura-
tion), human error, as well as other factors that may change be-
tween the measurement of one subsample and the next. Despite 
eff orts to avoid issues associated with the natural heterogeneity 
of soil samples, soil scientists oft en measure particle size distribu-
tions on samples that are not completely homogeneous within 
the sample container, usually a bag. Th is is especially a potential 
problem for laser PSA, because such a small subsample (usually 

0.3–0.5 g) is used for analysis. By way of comparison, in tradi-
tional pipette analysis, samples of 10 to 40 g are commonly used 
(Day, 1965; Soil Survey Staff , 1996, 2009). Use of small subsam-
ples does have some advantages, as well, for example, when only 
minute amounts of sample are available for analysis. Nonetheless, 
when small samples are analyzed, repeatability can be an issue, 
and that is the focus of our research.

Th e solution to the issue of measurement variability among 
subsamples, which could also be called random error, rests in 
understanding the frequency distribution of possible results. 
Comparisons of data from multiple subsamples can provide a 
reference for the normal variation that can be expected within 
a sample proper. Th ese data, plotted as frequency distributions, 
allow researchers to have a basis for evaluating if diff erences in 
particle size distributions between samples are attributable to 
measurement variability. In this study we use simple descriptive 
statistics to examine the precision of laser PSA results for mul-
tiple subsamples. Our results will be useful for soil scientists who 
need to eliminate the possibility of measurement variability as an 
explanation for inter- or intra-sample diff erences.

When multiple measurements from the same sample pro-
duce markedly diff erent results, a dilemma is created: How 
should one derive a single, best, representative result from mul-
tiple data? Where measurement variability is an issue for analyses 
with single value results, that is, concentration, a common ap-
proach is to use the mean of multiple measurements. Assuming 
a normal distribution of measurement results, the mean of an 
infi nite number of measurements would be at the middle of the 
frequency distribution curve. Because particle size analysis pro-
vides results that consist of a set of interdependent values, that 
is, a decrease in one bin’s value causes an increase in other bins’ 
values, calculating a single representative result is more compli-
cated. Th erefore, in this study we also propose and compare two 
methods for deriving a single set of values from data derived from 
PSA measurements of multiple subsamples.

MATERIALS AND METHODS
Using a standard bucket auger, we collected 1485 samples 

from loess and similar deposits across Wisconsin and the western 
Upper Peninsula of Michigan. In the fi eld, we recovered samples 
of approximately 500 g and air-dried them. Next, the samples 
were lightly crushed and passed through a 2-mm sieve to remove 
coarse fragments. Because laser PSA uses a very small subsample 
from the larger soil sample (<0.001% of a 500-g sample), it was 
important to make the sample as homogeneous as possible, to 
minimize the potential variability of results from diff erent sub-
samples. Th erefore, each fi ne-earth sample was passed through a 
sample splitter– and recombined–four times. It is important to 
note that loess is quite homogeneous naturally, because of the 
sorting nature of the eolian depositional system. Th erefore, our 
data should be viewed as representative of samples that have a 
minimum amount of inherent particle size variability.

Particle size was measured using a Malvern Mastersizer 
2000E laser particle size analyzer with a Hydro 2000MU pump 
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accessory (Malvern Instruments Ltd., Worcestershire, UK). As 
diff erent materials and dispersants have diff erent optical proper-
ties, this device requires these parameters to be set by the user. 
For our analysis, we assumed the refractive index and absorption 
values of the soil materials to be 1.549 and 0.01, respectively. 
Distilled water was used as the dispersant; it was assumed to have 
a refractive index of 1.33.

A subsample of 0.3 to 0.5 g was removed from a sample bag, 
using a spoon, and placed into a 25-mL glass vial. Five milliliters 
of a sodium hexametaphosphate dispersing solution was then 
added to the vial. Th e vial was fi lled with »15 mL of distilled 
water, bringing it to ≈90% capacity, and shaken for 1 to 2 h, to 
disperse any aggregates. Th e soil water suspension was then add-
ed to a 500 mL beaker of distilled water that was continuously 
stirred by a turbine, spinning at 3000 rpm, on the laser diff rac-
tion unit. Th e Malvern Mastersizer continuously pumps a por-
tion of this suspension through a gap between two glass lenses, 
or windows. Th e size of the particles passing between the lenses 
is measured by the scattering pattern of the laser, as it diff racts 
off  of the particles, by application of the Fraunhofer model, and 
using Mie theory (Malvern Instruments, 2004). Since laser dif-
fractometry oft en underestimates the amount of <2 μm particles 
due to their plate-like shape (Loizeau et al., 1994; Beuselinck et 
al., 1998). Konert and Vandenberghe (1997) suggested the clay–
silt break be set at 8 μm for comparison with traditional, that 
is, pipette, PSA. In house data have suggested better correlations 
between laser diff ractometry and the pipette method when the 
clay–silt break is set at 6 μm. Th erefore, we used a 6 μm clay–silt 
break in this study. For further discussion on the principles and 
application of laser diff ractometry for particle size characteriza-
tion see McCave et al. (1986), Singer et al. (1988), Agrawal et al. 
(1991), Loizeau et al. (1994), and Wen et al. (2002).

Laser PSA was conducted on 1485 samples, and then re-
peated by extracting and analyzing an additional subsample 
from each of these samples. Data from the fi rst two subsamples 
were used as a starting point to ascertain the normal amount of 
intrasample variation. Th e results of the multiple measurements 
were compared by reporting in the traditional three bin (clay, silt, 
sand) and seven bin (clay, silt, and the division of sand into fi ve 
subcategories) formats, as well as the more detailed 105 bin for-
mat of our laser diff raction setup. Th e distribution of diff erences 
was analyzed on a per bin basis for the three and seven bin re-
porting formats. However, analyzing per bin diff erences was not 
practical for 105 bins. Th erefore, two summary statistics were calcu-
lated and implemented for all three reporting formats. Th e cumula-
tive bin diff erence (CBD) was calculated by summing the absolute 
diff erences between two subsamples for all of the bins, as follows:

1
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k
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=
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a = fi rst subsample value, b = second subsample value, n = num-
ber of bins.

Th e mean bin diff erence (MBD) was calculated by dividing 
the CBD by the number of bins:

CBDMBD
n

=  [2]

Because the bin values are in volume percent, the units for 
CBD and MBD are also in percentages.

Both the CBD and MBD for the population of 1485 sam-
ples were plotted and analyzed in histograms, to better under-
stand their frequency distributions. Th e analysis of histograms 
is a common strategy for quality control (Tague, 2005). As a 
means of identifying outliers in this dataset, subsample pairs 
with CBDs exceeding 1 SD more than the mean of all samples’ 
CBDs were considered to be unacceptable, that is, their preci-
sion or repeatability was not high enough for this type of analy-
sis. In other words, CBD values in the far right-handed tail of a 
positively skewed distribution were selected for MBD was also 
investigated. Th e CBD was chosen to identify outliers because 
the CBD will be larger when many bins have small diff erences, 
while the MBD would remain small.

When necessary, additional subsamples were measured, us-
ing the same procedure as the previous subsamples, until every 
sample had a pair of subsamples with a CBD less than the preci-
sion threshold. Th e samples chosen for additional measurements 
were only those that continued to exceed the precision thresh-
old. Th is precision threshold was the mean of all samples’ CBDs 
plus 1 SD, as set by the analysis of the fi rst two subsamples.

RESULTS AND DISCUSSION
Precision of Particle Size Analysis in Sandy/Loamy 
Soils using Laser Diffractometry

Sample textures analyzed in this study ranged from loamy 
sand, to loam, to silt (Fig. 1). Clay contents of the samples ranged 
from 0.7 to 33.5%. Silt and sand contents had wider ranges of 
volume percent contents; silt contents ranged from 9.4 to 79.0%; 
sand contents ranged from 0.0 to 89.9% (Table 1; Fig. 1). For 
this reason, extrapolating our results (below) to fi ne-textured or 
sandy soils should be done with caution

It is important to note that because the PSA results are re-
ported as volume percentages, bin values as well as their diff er-
ences, means, and SDs all are reported in “percent” units. To avoid 
confusion, we will not report any of the variances as percentages 
of a result, but only as diff erences in content volume percentages.

Th e mean of all the samples’ CBDs between the fi rst two 
subsamples, for 3, 7, and 105 bins, were 7.3, 9.5, and 10.6%, 
respectively (Table 2). Th e increase in the CBDs with a higher 
quantity of bins was expected because of the lower impact that 
measurement diff erences would have on results that used wider 
bin ranges. It is this eff ect that makes the analysis of precision 
more important when reporting particle size distributions with 
higher levels of detail, for example, data from laser PSA.

Th e three bin reporting format allows for the analysis of the 
precision of each bin individually. Th e mean (and SD) of the dif-
ferences between all of the samples’ fi rst two subsample measure-
ments for the clay, silt, and sand bins were 1.1 ± 1.3%, 2.8 ± 3.1%, 
and 3.5 ± 4.0%, respectively. Th erefore, this analysis suggests that 
84.1% of repeated measurements can be expected to return dif-
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ferences of <2.3% for clay, <5.8% for silt, and <7.5% for sand. 
For comparing volume percentages quantitatively, the precision 
values provide a range of likely repeated measurement results. In 
this way, these precision ranges are describing the random error, 
with the large sample set on which they are based thereby pro-
viding a high level of confi dence for the range of samples. Th ese 
values could be used instead of standard error for identifying dif-
ferences between samples that could be due to random error.

In addition to determining the sand–silt–clay absolute 
diff erences that can be expected from multiple PSA runs (see 
above), we also calculated the USDA texture classifi cation of the 
subsamples (Soil Survey Division Staff , 1993), based on the same 
data. Our data show that 171 of the 1485 (11.5%) samples actu-
ally changed texture class, from the fi rst to the second PSA mea-
surement. Of the samples that changed texture class, the most 
common shift s were between silt loam and loam, and between 
silt loam and sandy loam. From the 171 samples that changed 
texture class, only one sample shift ed to a nonadjacent texture 
class. Th e sample that changed more than a single texture class, 
shift ed from silt loam to loamy fi ne sand. Th ese shift s likely show 
the impact that a few grains of sand can have on volumetric per-
centages. If a texture class shift  is acceptable »12% of the time, 
then one PSA measurement by laser diff ractometry should be 
suffi  cient. However, because particle size data are, in theory, con-
tinuous, more bins do provide a better and more detailed picture 
of the particle size distribution. Indeed, with the higher level of 

detail, small textural diff erences between samples can be deter-
mined. We point out, however, that the repeatability of texture 
class determination may be considerably greater than 88% for 
fi ner-textured samples (see below).

Th e decrease in precision, that is, the increase in variability 
that occurs with the increase in particle size, as shown above in 
the three bin reporting format (Table 2), is also observed when 
the reporting formats include more bins. Th e mean bin diff er-
ence, as well as the SD of bin diff erences, increased with increas-
ing particle size for the 105 bin reporting format (Fig. 2). Th e 
seven bin reporting format followed this trend through the fi ne 
sand fraction. However, mean bin diff erences and their SDs 
decreased as fewer samples had particles in the coarser size rang-
es. Also, our laser particle size analyzer does not evaluate particles 
within the 1100 to 2000 μm range, and therefore, the mean dif-
ferences and SDs were 0 for bins within this range. Th e seven bin 
reporting format expands the number of bins in the sand fraction 
from one to fi ve, placing a greater emphasis on the sand fraction. 
Th e trend of an increase in measurement variability with larger 
particle sizes was less clear for the seven bin reporting format be-
cause of its emphasis on the sand fraction and the limitations of 
our analyzer to detect particles >1100 μm. However, given the 
clarity of the trend in the 3 and 105 bin reporting formats, it is 

Table 1. Summary of particle size results for the fi rst two subsamples 
from entire sample population, separated into three particle size 
bins, and with the sand category divided into fi ve bins.

Percentage of 
volume 

Clay Silt Sand VFS† FS MS CS VCS

Minimum 0.74% 9.39% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Maximum 33.52% 79.0% 89.9% 34.7% 54.7% 44.3% 26.2% 2.0%
†  VFS, very fi ne sand; FS, fi ne sand; MS, medium sand; CS, coarse sand; 

VCS, very coarse sand.

Table 2. Particle size differences between fi rst two subsam-
ples, by three particle size bins and with the sand category 
divided into fi ve bins.

Difference Clay Silt Sand VFS† FS MS CS VCS

Minimum 0.00% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
Maximum 18.77% 38.3% 54.4% 13.9% 30.0% 17.2%15.1% 1.7%

Mean 1.07% 2.8% 3.5% 1.1% 1.5% 1.6% 1.4% 0.1%
Different SD 1.27% 3.1% 4.0% 1.3% 1.9% 1.9% 1.6% 0.2%
†  VFS, very fi ne sand; FS, fi ne sand; MS, medium sand; CS, coarse 

sand; VCS, very coarse sand.

Fig. 1. Distribution of all sample results from the fi rst two subsamples, 
plotted on a standard USDA texture triangle.

Fig. 2. Mean difference and mean difference plus 1 SD for the 105 
particle size bins of all 1485 samples. The mean bin difference 
(MBD) precision threshold, which identifi ed the same samples as 
the cumulative bin difference (CBD) precision threshold, was 0.2% 
(dashed line). Individual bins with mean differences greater than the 
MBD precision threshold indicate the types of samples that were most 
likely to have unacceptable precision. The decline in mean difference 
and SD for particle sizes >500 μm is likely due to the paucity of 
samples in our population containing those particle sizes.
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likely that the trend would hold if samples with particle sizes in 
the 1100 to 2000 μm range had also been analyzed.

Th e increase in measurement variability in samples with 
larger particle sizes is likely due to sample homogeneity issues. 
A small number of sand particles–either included in a given sub-
sample or not included in another–can have a large eff ect on the 
volume percent measurements of the sand fraction. Despite ef-
forts to homogenize our samples, larger particles (which comprise 
a proportionately smaller quantity of the particles in a sample) are 
diffi  cult to make equally represented in every subsample.

Th e per bin variance ranges shown earlier for the three bin 
reporting format are not as practical for describing the precision 
for the more detailed 105 bin format. Keeping in mind that pre-
cision decreases with increased particles size, the precision of the 
105 bin format can be summarized with the MBD of all samples 
plus the SD. In our analysis, we found that 86.1% of repeated 
(second) results had a MBD of 0.2% or less. However, the re-
peated measurements also indicated that subsample results can 
have a MBD as high as 1.0% or an individual bin diff erence as 
high as 3.8% in the 105 bin format.

Aft er analyzing the precision characteristics of the fi rst two 
subsamples (Table 3), we used the mean and SD of the CBD 
to (i) establish a threshold for determining which samples are 
statistical outliers and (ii) determine the number of repeated 
measurements required to provide two subsample results whose 
diff erences are below that threshold. Th e CBD and MBD his-
tograms of all three reporting formats showed positively skewed 

distributions (Fig. 3). Th is fi nding supports the classifi cation of 
subsample diff erences in the right-handed tail of the CBD or 
MBD histograms as outliers. Th erefore, we set the CBD preci-
sion threshold as the mean CBD plus 1 SD that was established 
by the fi rst two subsample measurements of all 1485 samples to 
identify outliers that needed additional analysis. As the mean 
CBD and SD diff ered, depending on the number of bins, the 
precision threshold was necessarily diff erent for the three report-
ing formats. Th e CBD precision threshold for the 3, 7, and 105 
bin reporting formats was set at 15.1, 18.0, and 19.8%, respectively.

We chose to use CBD as our precision standard because the 
CBD is likely to be more sensitive than the MBD to small diff er-
ences across many bins. However, we did calculate the MBD and 
evaluated subsample measurement results in the same manner as 
with the CBD precision threshold. Aft er performing this com-
parison, we found that the MBD precision threshold identifi ed 
the same sample measurements in our data set as outliers as did 

Table 3. Mean and standard deviation data for measures of 
difference between the fi rst two subsamples.

Bin Mean 1 SD Precision thresholds†

Cumulative 3 bin (-) 7.3% 7.8% 15.1%
Mean 3 bin (-) 2.4% 2.6% 5.0%

Cumulative 7 bin (-) 9.5% 8.5% 18.0%

Mean 7 bin (-) 1.4% 1.2% 2.6%

Cumulative 105 bin (-) 10.6% 9.2% 19.8%
Mean 105 bin (-) 0.1% 0.1% 0.2%
† Set by calculating the mean plus 1 SD.

Fig. 3. Histograms of cumulative and mean bin differences, by 3 and 105 bins.
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the CBD precision threshold. Th erefore, the special case where 
CBD might be more sensitive than MBD did not occur in any of 
our samples. Th is result suggests that the MBD precision thresh-
old identifi es the same outliers as the CBD precision threshold, 
in most circumstances.

In cases where repeatability is a concern, the precision 
threshold can be used to identify samples requiring additional 
subsample measurements; the repeated measurements can assist 
in fi ltering out random, intrasample variability. From a quality 
control point of view, using a threshold of the mean diff erence 
plus 1 SD identifi es outliers from the expected, normal variation. 
However, the level of precision needed for diff erent types of re-
search may diff er from this standard. Using the assumption that 
measured values will have a Gaussian distribution around the 
population mean, the probability of two sample measurements 
being similar increases closer to the population mean. Th erefore, 
the more similar two runs are to each other, the greater the likeli-
hood that they are similar to the population mean. Th is assump-
tion does not eliminate the possibility of two similar sample 
measurements being greatly diff erent than the population mean, 

but reduces the risk with practical methods (i.e., the quantity of 
repeated measurements is minimized).

From our 1485 samples, the 105 bin standard found 134 
samples (9.0%) to be outliers, that is, they had a CBD above the 
threshold. Th e three bin standard identifi ed 140 such samples, 
and the seven bin standard identifi ed 143 outliers from the 
original two subsamples of all the samples. Th e higher number 
of outliers identifi ed by the three and fi ve bin formats is likely 
due to the higher level of precision set as the precision threshold 
for these reporting formats. Using fewer bins made the results 
less sensitive to measurement diff erences, and therefore the CBD 
distribution was not as wide.

Each of the 134 samples identifi ed as outliers by the 105 bin 
standard were run a third time. Results from this third analysis 
show that the 134 subsamples had a generally similar soil tex-
ture range as the fi rst two subsample sets. Interestingly, many 
of these “third run” subsamples had higher sand contents than 
did the larger sample population. Th e mean percentage of sand 
was 30.1% for the full sample set, but 38.9% for the set of 134 
samples that warranted a third analysis run (Table 4). Th is fi nd-
ing supports our conclusion that greater measurement variability 
appears to correlate with sandier samples. Th e per bin precision 
analysis conducted on the 105 bin reporting format for the entire 
data set predicted that over 50% of samples with mean weighted 
particle sizes >302 μm would likely have unacceptable precision 
aft er two runs (Fig. 1).

From the 134 samples that had a third subsample tested, 39 
still did not have a pair of subsamples that were similar enough 
to be considered acceptable. As would be expected, the smaller 
population of this fourth set of subsamples had a narrower range 
of percentages in the soil separates categories. Th e continued 
increase in the mean percent sand for this fourth subsample set 
(Table 4) again supports our conclusion that samples with coars-

er particle sizes, especially those with more sand, yield more 
variable, intrasample, particle size results by laser diff ractom-
etry. Th is fi nding again demonstrates the impact that a few 
grains of sand can have, in a small sample, on PSA data, due 
to their exponentially larger volume.

Aft er a fourth subsample was analyzed on the remain-
ing 39 outlier samples, only one sample did not have a pair 
of subsamples similar enough to be below the 105 bin pre-
cision threshold. Th is sample had total sand content results 
that ranged from 48 to 68%, showing that it was one of the 
sandier samples of the entire population. A fi ft h measure-
ment on this sample did produce results similar enough to a 
prior measurement to be below the precision threshold. Th e 
particle size distribution for this sample was bimodal, with 
concentrations of particles in the 63 to 69 μm and 302 to 
331 μm ranges. Depending on the subsample, diff erent rela-
tive amounts of these particle size groups were included in 
each of the analysis runs. All fi ve subsamples from this sam-
ple would have classifi ed within (or very close to) the sandy 
loam textural class.

Table 4. Summary statistics for each subsequent subsample 
measurement dataset.

Range/Mean percentage First set†Second set†Third set‡ Fourth set§

Clay range 1–34% 2–25% 1–24% 2–19%
Silt range 9–79% 11–78% 11–76% 24–70%

Sand range 0–90% 5–85% 5–86% 14–73%

Mean percent clay 11% 11% 9% 8%

Mean percent silt 58% 59% 52% 49%
Mean percent sand 30% 30% 39% 43%
† Includes all samples.
‡  Includes only samples that exceeded the acceptable difference 

threshold from the fi rst two sets.
§  Includes only samples that continued to not have an acceptable 

pair after three subsamples.

Fig. 4. Example of continuous particle size curves generated from the 105 bin 
results of a single, silty, loess sample. In this example, the mean of the two 
best matching subsamples has been used for the best possible representative 
curve for repeatable results. This method avoids the infl uence of data from 
extremely different, that is, anomalous, subsamples (i.e., the 3rd subsample). 
In this case, including the third subsample increases the percentages in the silt 
fraction while decreasing the percentages in the sand fraction.
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Th e CBD and MBD statistics were useful tools for analyz-
ing the precision of PSA results. Th ey were also useful for quanti-
tatively identifying repeated PSA results that diff ered from each 
other, beyond a specifi ed standard. Whereas our study used this 
method to analyze the precision of PSA results from laser dif-
fractometry, they could be used in a similar way for assessing the 
precision of other PSA methods, or conceivably for any other 
measurement that consists of a series of interdependent values.

Obtaining Representative Values from 
Multiple Measurements

Because each PSA run returns unique data, researchers will 
need to develop strategies that return a single, representative (but 
optimal) set of particle size values for that sample. In other words, 
aft er all the extra work of running subsamples twice, or more of-
ten, what should be done to these data to yield an optimal suite 
of data for the 105 (or 7 or 3) particle size bins? To answer this 
question, we calculated and graphed the continuous particle size 
curves for each sample, using two approaches: (i) using the mean 
for each particle size bin, based on all subsample results, and 
(ii) using the mean values for only the two best matching sub-
sample results (Fig. 4). Th e best matching subsamples were con-
sidered to be the subsamples with the lowest CBD. For samples 
whose fi rst two subsamples were similar enough to not warrant 
additional subsample analysis, there is no diff erence in these two 
approaches. Th e approach using the mean of the two best match-
ing subsamples avoided infl uence from subsamples’ measure-
ments that were unacceptably diff erent than the others. Th e two 
best matching subsample approach, that is, no. (ii) above, was 
also more likely to ignore anomalous particle size peaks, which 
usually occurred in the sand fraction (Fig. 5).

Nonetheless, the two best matching subsample approach 
did not always remove the infl uence of irregular particle size 
peaks. If a single subsample with an “anomalous” peak closely 
matches another subsample in most of the other particle size 
bins, that subsample could be one of the two best matching 
subsamples, in which case, the resulting mean curve would 
still refl ect some of that peak. Figure 6 shows an example 
where a subsample with an anomalous peak is one of the 
best matching pairs. In this situation, there would again be 
little diff erence between the mean of all subsamples and the 
mean of only the best two matching subsamples. Th erefore 
we recommend using the mean of the two subsample values 
with the least CBD in combination with the CBD precision 
threshold used in this paper. Th e CBD precision threshold 
will identify which samples require more measurements to 
increase the confi dence that the two best matching subsamples 
are representative of the sample. Although the mean of the two 
best matching subsamples will not always eliminate anomalous 
particle size peaks, it will minimize their infl uence.

CONCLUSIONS
Although laser diff ractometry has many advantages 

over previous PSA methods, the increased level of detail it 

provides, and the smaller sample sizes used in the analysis meth-
od, both introduce concerns of repeatability. Our research ad-
dresses these issues by characterizing the precision of repeated 
subsample measurements and evaluating methods for producing 
sample results with a high confi dence of repeatability. Use of ei-
ther an absolute CBD or an absolute MBD will prove helpful for 
researchers examining PSA data precision.

We caution that our results were based on research per-
formed on silty–loamy soils; sandy or clayey soils may have dif-
ferent variances. Although our results showed trends that could 
be extrapolated to samples with other textures, only additional 
work–on samples of those kinds–can provide the higher level of 

Fig. 5. An example of continuous particle size curves generated from 
the 105 bin results of a single sample. In this example, the mean of 
the two best matching subsamples fi lter out the “anomalous” sand 
peak in the particle size distribution. Although deemphasized, using 
the mean of all four subsamples allowed for the sand peak to remain 
a part of the particle size curve. Use of the mean of the two best 
matching subsamples removed the peak that was only measured in 
one subsample.

Fig. 6. Example of continuous particle size curves generated from the 105 
bin results of a single sample. In this example, the mean of the two best 
matching subsamples does not fi lter out the “anomalous” sand peak, because 
the subsample with the anomalous peak closely matches another subsample 

in the other particle size bins. Schaetzl and Luehmann (2012) examined the 
origins of these “anomalous” sand peaks in loess samples.



1726 Soil Science Society of America Journal

confi dence in the expected variability of laser particle size mea-
surements for clayey and sandy samples. Also, even though this 
study specifi cally assessed the precision of PSA results from a 
Malvern Mastersizer 2000E, the variation is largely due to the 
measurement of diff erent subsamples. Th erefore, we anticipate 
this method to be useful for assessing and comparing the preci-
sion for similar data generated using other PSA methods.

In this analysis, performed on silty/loamy soils, result vari-
ability, that is, random error that was most likely due to intrasu-
bsample heterogeneity, increased with coarser textured samples, 
especially those that were slightly sandier. Results from 1485 
samples, mostly within the sandy– loam, loam–silt part of the 
texture triangle (Fig. 1), suggest that the normal variance of mea-
surements had only minor impacts on the soil texture classifi ca-
tion. Within a three bin reporting format, the mean diff erence 
between two subsamples was 1.1% (SD = 1.3%) for clay, 2.8% 
(SD = 3.1%) for silt, and 3.5% (SD = 4.0%) for sand. Because 
these values are based on a large sample set, they could be used 
as a type of confi dence interval for assessing diff erences due to 
random error. Variability of results in a 105 bin format is better 
described with a summary statistic. For the samples in our study, 
the MBD was 0.1% with a SD of 0.1%.

To screen for outliers, we recommend measuring a second 
subsample and conducting further analysis on samples exceeding 
a precision threshold. In our study, samples with two subsamples 
that had a CBD greater than the population’s mean CBD plus 1 SD 
were selected for additional analysis. For the 105 bin reporting for-
mat, our precision threshold was set at a CBD of 19.8%. Within 
fi ve subsample measurements, all samples had a pair of subsample 
results with CBDs below this threshold for acceptable diff erences.

We reiterate that fi ner-textured samples are least likely to 
require additional PSA measurements; coarser-textured samples 
are best run at least twice, because of higher measurement vari-
ability. Our data suggest that, if the analyst wishes only to cat-
egorize samples to texture class, only one measurement is usually 
necessary, especially on fi ner-textured samples. Aft er all samples 
have subsamples meeting the CBD precision threshold, we rec-
ommend using the per bin mean of the two subsamples with the least 
CBD to derive the best representative values for repeatable results.
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